Select Language
Afrikaans
Albanian
Arabic
Armenian
Azerbaijani
Basque
Belarusian
Bulgarian
Catalan
Chinese (Simplified)
Chinese (Traditional)
Croatian
Czech
Danish
Dutch
English
Estonian
Filipino
Finnish
French
Galician
Georgian
German
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Malay
Maltese
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Thai
Turkish
Ukrainian
Urdu
Vietnamese
Welsh
Yiddish
login:
password:
|
create your account
supporting material
|
info
|
contact
browse datasets
search:
advanced search
SAMPLES (127)
mace:id
Technology # Array version
# SEVERAL # # SEVERAL
Affymetrix # HGU 133 Plus 2
Affymetrix # MGU 74 Av2
Affymetrix # MoGene V1.0st
Affymetrix # Mouse 430A
Affymetrix # Rhesus
Agilent # AGHUMAN
Agilent # AGMOUSE
Applied Biosystems # HGS V1
Applied Biosystems # HGS V2
Applied Biosystems # MGS V1
Applied Biosystems # MGS V2
Applied Biosystems # RGS V1
Genopole SXB # SXBH1
Genopole SXB # SXBH2
Genopole SXB # SXBH3
Genopole SXB # SXBM1
Genopole SXB # SXBM2
Genopole SXB # SXBM3
Illumina # HumanHT-12 V4.0
Illumina # HUMANWG6v3
Illumina # MouseWG-6 v2.0
Species
# SEVERAL
Cercocebus atys
Chlorocebus sabaeus
Homo sapiens
Macaca mulatta
Macaca Nemestrina
Mus musculus
Pan troglodytes
Rattus norvegicus
Organ
# OTHER
# SEVERAL
Adenoid
Adrenal gland
Bladder
Blood
Blood vessel
Brain
Bronchi
Cervix
Embryo
Esophagus
Gallblader
Heart
Hypotalamus
Intestine
Kidney
Larynx
Liver
Lung
Lymph node
Mammary gland
Mussle
Pancreas
Parathyroid
Penis
Pharynx
Pineal gland
Pituitary gland
Prostate
Salivary gland
Seminal vesicle
Skin
Spinal cord
Spleen
Stomach
Test
Thymus
Thyroid
Tonsil
Trachea
Ureter
Uterus
Vagina
Vas deferens
Tissue
# OTHER
# SEVERAL
Bone Marrow
Connective - Dense Irregular Tissue (Collagen)
Connective - Dense Regular Tissue (Collagen)
Connective - Dense Regular Tissue (Elastic)
Connective - Loose Tissue (Adipose)
Connective - Loose Tissue (Areolar)
Connective - Loose Tissue (Reticular)
Epithelium - Simple (Columnar)
Epithelium - Simple (Cuboidal)
Epithelium - Simple (Pseudostratified)
Epithelium - Simple (Squamous)
Epithelium - Stratified (Columnar / Cuboidal)
Epithelium - Stratified (Squamous: Keratinized)
Epithelium - Stratified (Squamous: NonKeratinized)
Fluid - Blood
Fluid - Lymph
Gland - Endocrine Glands
Gland - Exocrine Glands (Ducts and Tubules)
Muscle - Non-striated
Muscle - Striated (Cardiac)
Muscle - Striated (Skeletal)
Nervous - Nerves
Nervous - Neurons (Bipolar)
Nervous - Neurons (Multipolar)
Nervous - Neurons (Unipolar)
Nervous - Receptors
Placenta
Stem cells
Supportive - Cartilage (Elastic)
Supportive - Cartilage (Fibrocartilage)
Supportive - Cartilage (Hyaline)
Supportive - Osseous (Compact)
Supportive - Osseous (Spongey)
Physiopathology
# HEALTHY
# OTHER
# SEVERAL
apoptosis
autocrine signaling
differentiation
drug response
electric response
endocrine signaling
environemental response
homeostasis
immune response
mechanic response
necrosis
paracrine signaling
proliferation
Type
# OTHER
# SEVERAL
conditional knockout
drug stress
electric stress
environmental stress
ground state
immune stress
knockdown RNAi
knockout
mechanic stress
stable transfection
time course
transient transfection
Name
Attached file
download project data file ('.map')
Attached file (see:
ruid website
)
download project data file ('.map' RUID converted)
Attached file
download raw data files ('.zip')
Attached file
download annotation files ('.zip')
User name
Nicolas Tchitchek
Email
nicolas.tchitchek@ihes.fr
Phone / Fax number
0033610887604 /
Location
Institut des Hautes Études Scientifiques (Systems Epigenomics Group) - 35, route de Chartres - 91440 Bures-sur-Yvette, FRANCE
Scientific description
Liver failure due to chronic hepatitis C virus infection is a major cause for liver transplantation worldwide. Recurrent infection of the graft is universal in HCV patients following transplant and results in rapid progression to severe fibrosis and end-stage liver disease in one-third of all patients. No single clinical variable, or combination thereof, has so far proven accurate in identifying patients at risk of hepatic decompensation in the transplant setting. A combination of longitudinal, dimensionality reduction, and categorical analysis of the transcriptome from 111 liver biopsy specimens taken from 57 HCV-infected patients over time identified a molecular signature of gene expression of patients at risk of developing severe fibrosis. Significantly, alterations in gene expression occur prior to histologic evidence of liver disease progression, suggesting that events which occur during the acute phase of infection influence patient outcome. Additionally, a common precursor state for different severe clinical outcomes was identified. Hence, incidence of severe liver disease is a process initiated early during HCV infection of the donor organ. The cellular network at the basis of the initial transition to severe liver disease was identified and characterized.
Technical description
Human Liver Tissue Samples. Core needle liver biopsies were obtained from liver transplant patients at the University of Washington Medical Center (UWMC). All patients provided informed consent according to protocols approved by the Human Subject Review Committee at the University of Washington. No donor organs were obtained from executed prisoners or other institutionalized persons. Upon collection, biopsies were stored in RNAlater (Life Technologies, Carlsbad, CA) and sent to the Katze lab for RNA isolation and microarray analysis. Non-identifiable patient data detailed in Table 1 was used to both categorize patients according to clinical outcome. Total RNA Isolation and mRNA Amplification. Biopsy specimens were disrupted in TRIzol reagent (Life Technologies, Carlsbad, CA) using a Polytron homogenizer (PowerGene 700; Fisher Scientific, Pittsburgh, PA). Total RNA was isolated according to the manufacturer’s protocol. All total RNA samples were amplified using the RiboAmp RNA Amplification Kit (Arcturus/MDS, Mountain View, CA). The quality of amplified RNA was determined by capillary electrophoresis using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). Expression Microarray Format. A single experiment comparing two mRNA samples was done with four replicate human 1A (V2) 22K oligonucleotide expression arrays (Agilent Technologies, Palo Alto, CA) using the dye label reverse technique. This allows for the calculation of mean ratios between expression levels of each gene in the analyzed sample pair, standard deviation, and p-values for each experiment. Spot quantitation, normalization, and application of a platform-specific error model were performed using Agilent's Feature Extractor software.
References
Rasmussen AL, Tchitchek N, Susnow NJ, Krasnoselsky AL, Diamond DL, Yeh MM, Proll SC, Korth MJ, Walters KA, Lederer S, Larson AM, Carithers R, Benecke A, Katze MG. Early transcriptional programming links progression to hepatitis C virus-induced severe liver disease in transplant patients.
Early transcriptional programming links progression to hepatitis C virus-induced severe liver disease in transplant patients. Rasmussen AL, Tchitchek N, Susnow NJ, Krasnoselsky AL, Diamond DL, Yeh MM, Proll SC, Korth MJ, Walters KA, Lederer S, Larson AM, Carithers RL, Benecke A, Katze MG. Hepatology. 2012 Jan 25. doi: 10.1002/hep.25612. [Epub ahead of print]
Pubmed : http://www.ncbi.nlm.nih.gov/pubmed/22278598